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Abstract. In many forested ecosystems, it is increasingly recognized that the probability of
burning is substantially reduced within the footprint of previously burned areas. This self-limit-
ing effect of wildland fire is considered a fundamental emergent property of ecosystems and is
partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes),
thereby reducing the likelihood of uncharacteristically large fires in regions with active fire
regimes. However, the strength and longevity of this self-limiting phenomenon is not well under-
stood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of
its strength and longevity for five fire-prone study areas in western North America and investi-
gate how each measure varies along a spatial climatic gradient and according to temporal (i.e.,
annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-
limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United
States to 33 yr in the cold, northern study areas in located in northwestern Montana and the
boreal forest of Canada. We also found that spatial climatic variation has a strong influence on
wildland fire’s self-limiting capacity. Specifically, the self-limiting effect within each study area
was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler
settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last,
our findings show that annual climatic variation influences wildland fire’s self-limiting effect:
drought conditions weakened the strength and longevity of the self-limiting effect in all study
areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wild-
land fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire
sizes and effects. However, our findings show that the strength and longevity of the self-limiting
effect varies considerably according to spatial and temporal climatic variation, providing land
and fire managers relevant information for effective planning and management of fire and
highlighting that fire itself is an important factor contributing to fire-free intervals.

Key words: age dependence; annual climate variation; drought; fire frequency; fire interval; self-limiting
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INTRODUCTION

Although the area burned by wildland fire has
increased in recent decades (Westerling 2016), there is
growing recognition that fire often exhibits self-limiting
properties, whereby it reduces subsequent fire activity
(Peterson 2002, McKenzie et al. 2011). As wildland fire
consumes fuel, and hence reduces biomass, the probabil-
ity of burning is lessened compared to sites with an
extended fire-free interval (H�eon et al. 2014). The over-
all reduction in the likelihood of fire within the footprint
of previously burned areas can be described as the self-
limiting effect. The self-limiting effect is a manifestation
of at least two separate phenomena that have been previ-
ously documented in the literature. The first of these

concerns ignitions: fires are less likely to ignite within
the footprint of previously burned areas (Krawchuk
et al. 2006, Penman et al. 2013, Parks et al. 2016). The
second of these phenomena concerns fire spread: fires
are less likely to spread into recently burned areas (Col-
lins et al. 2009, Parks et al. 2015). In other words, previ-
ously burned areas oftentimes act as an absolute barrier
to subsequent fire spread. Consequently, the self-limiting
effect is an emergent property of recently burned areas
that depends on the two processes mentioned here.
The self-limiting effect can be quantified using two

measures. The strength of self-limiting effect (i.e., the
reduced probability burning) is generally strong immedi-
ately after fire and diminishes as time since fire increases
(e.g., Fontaine et al. 2012). As such, the effect is more or
less negligible after sufficient time has passed for fuels to
accumulate to flammable levels (Holsinger et al. 2016,
Thompson et al. 2017), and the length of time (i.e., num-
ber of years) this process takes is hereafter referred to as
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the longevity of the self-limiting effect. Although several
studies have successfully documented some of the pro-
cesses resulting in a reduced probability of burning, the
overall self-limiting effect is for the most part unquanti-
fied in a replicated manner spanning multiple study areas
and fire environments (but see Price et al. 2015). Indeed,
it is these metrics (i.e., the strength and longevity of the
self-limiting effect) that managers will find most useful in
determining the benefit that past wildland fires will pro-
vide with respect to limiting future fires.
Ample evidence suggests that the strength and longev-

ity of wildland fire’s self-limiting effect varies geographi-
cally (cf. Holsinger et al. 2016, Prichard et al. 2017),
likely an outcome of top-down climatic controls on pro-
ductivity, vegetation, and fire regime characteristics
(Krawchuk and Moritz 2011, Pausas and Ribeiro 2013).
For example, in shrubland systems in California, USA,
Moritz (2003) and Price et al. (2012) found that fires had
virtually no influence on subsequent fire activity. Evi-
dence from dry and warm forest ecosystems in both Aus-
tralia and the United States, however, suggest that
wildland fire inhibits the ignition and spread of subse-
quent fire for up to 10 years (Collins et al. 2009, Price
and Bradstock 2010, Holsinger et al. 2016). In cooler and
wetter forested settings in the United States and Canada,
wildland fire limits subsequent fire activity and extent for
up to 25–50 yr (Parks et al. 2015, Erni et al. 2017).
Although these studies do not explicitly evaluate variation
in self-regulating processes along spatial climatic gradi-
ents, the differing results across such wide-ranging geog-
raphy collectively suggest that spatial climatic variation
undoubtedly plays a key role in influencing wildland fire’s
self-limiting capacity. However, all studies to date pertain-
ing to self-regulating processes aggregate results within
individual study areas (e.g., Collins et al. 2009, Parks
et al. 2015, 2016). An explicit evaluation of the self-limit-
ing effect in relation to fine-scale climatic variation (i.e.,
within individual study areas) is needed because fire man-
agers must make decisions on landscapes comprised of
highly diverse climatic settings and vegetation types.
There is active debate as to whether, and under which

circumstances, temporal climatic variation (i.e., extreme
fire weather) influences the self-limiting capacity of
wildland fire (Fernandes et al. 2012). Some studies
concluded that extreme weather can override any self-
regulating properties of fire (Johnson et al. 2001, Moritz
et al. 2004, Schoennagel et al. 2004, Van Wilgen et al.
2010), whereas others found no clear evidence that this
effect lessens as fire weather becomes more severe (Price
et al. 2014, Storey et al. 2016). However, as the findings
of Collins et al. (2009) and Parks et al. (2015) showed,
there may in fact be a middle ground where extreme fire
weather reduces the strength and longevity of wildland
fire’s self-regulating properties but does not completely
override it. Given the divergent findings of these studies,
the influence of temporal climatic variation on the self-
limiting capacity of wildland fire is an open question
that is clearly in need of further research.

Managing landscapes that are resilient to natural distur-
bances such as fire is an increasingly important goal for
many land management agencies in North America (e.g.,
Forests and Rangelands 2017). In light of increasing fire
activity and ever-growing fire-suppression expenditures
(Calkin et al. 2015), it is imperative that we understand
how wildland fire influences subsequent disturbance pro-
cesses. In North America, wildland fire “treats,” so to
speak, substantially more area than traditional fuel treat-
ment strategies such as thinning or prescribed burning
(USDA Forest Service 2016a, NIFC 2017) and as such,
land management agencies are keenly interested in how
long, and under what weather conditions, previous burns
act as fuel treatments (cf. Miller 2003, North et al. 2012,
Hessburg et al. 2015). In addition, improved knowledge of
what factors (i.e., spatial and temporal variation in climate)
enhance or constrain wildland fire’s self-limiting effect
could also be useful to those who model fire likelihood and
risk across large landscapes (Finney et al. 2011, Parisien
et al. 2011, Parks et al. 2012) and potentially inform efforts
to predict fire activity under a warming climate (Batllori
et al. 2013, McKenzie and Littell 2017, Parks et al. 2017).
Because many fire-prone forested landscapes of western

North America have been transformed by a century of
fire exclusion and management activities (e.g., logging;
Heyerdahl et al. 2001, Keane et al. 2002), they are often
thought to be susceptible to uncharacteristically large
and severe wildland fire that may lead to ecological
degradation (Mallek et al. 2013, Harris and Taylor 2015,
Coop et al. 2016). As such, there is mounting interest in
restoring landscapes that are resilient to wildland fire
(Hessburg et al. 2015, Stephens et al. 2016) and, moti-
vated by increased fire activity in recent decades (Wester-
ling 2016), there is a strong need for detailed information
pertaining to wildland fire’s ability to limit future fire
activity. Yet, few studies have specifically analyzed the
self-limiting capacity of wildland fire, nor its relationship
with both spatial and temporal variation in climate. In
this study, we evaluate wildland fire’s self-limiting effect
in five fire-prone study areas in western North America
using detailed fire history spatial data spanning 1972–
2015. Specifically, we aimed to (1) quantify the strength
and longevity of the self-limiting effect in each study area,
(2) evaluate whether or not the self-limiting effect varies
according to a spatial climatic gradient, and (3) evaluate
whether or not the self-limiting effect is influenced by
temporal climatic variation. Our results could provide
valuable information that is necessary to better manage
forested systems and may reveal opportunities to restore
resilience to fire-adapted ecosystems.

METHODS

Study areas

We conducted our investigation within five study areas
composed entirely of protected lands in western North
America (Fig. 1). We focused on these protected study

574 SEANA. PARKS ET AL.
Ecological Applications

Vol. 28, No. 2



areas for two reasons. First, the protected areas we chose
all have policies whereby wildland fire is allowed to burn
with little to no fire suppression. Second, our focus on
protected areas limits potential confounding effects of
land-management activities (e.g., forestry, agriculture)
and anthropogenic features (e.g., roads) that are more
common outside such areas. These study areas cover a
broad latitudinal range that corresponds to climate gra-
dients ranging from cold and moist to warm and dry. All
study areas have experienced substantial fire activity in
recent decades (Fig. 2).

WBNP (Wood Buffalo National Park).—WBNP is
Canada’s largest national park (44,800 km2) and a
UNESCO world heritage site. The park has little

topographic relief and is underlain by discontinuous per-
mafrost. Vegetation in WBNP is representative of the
western Canadian boreal forest and is composed of wet-
lands (fens and bogs; ~70%), upland forest (~20%), and
open water (10%). The dominant tree species on well
drained sites include jack pine (Pinus banksiana), white
spruce (Picea glauca), trembling aspen (Populus tremu-
loides), and balsam poplar (Populus balsamifera). Black
spruce (Picea mariana) and tamarack (Larix laricina)
are common in treed bogs and fens, respectively. Wet-
land areas, most of which are dominated by graminoids,
Sphagnum spp. mosses, or shrubs, have varying degrees
of cover. The fire season runs from May through mid-
September, peaking between June and August
(Kochtubajda et al. 2006). Wildland fires are mainly

FIG. 1. Climatic moisture deficit (CMD) representing the 1981–2010 time period for each study area. CMD is scaled differently
for each study areas.
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stand replacing and can grow very large (>100,000 ha).
From 1972 to 2015, about 2.5 million hectares burned in
WBNP.

CCE (Crown of the Continent Ecosystem).—The CCE
(10,331 km2) is comprised of Glacier National Park and
the Great Bear, Bob Marshall, and Scapegoat Wilder-
ness Areas in Montana, USA. Elevations range from
950 m to over 3100 m. In this rugged study area, alpine
glacial canyons and cirques drain into major river val-
leys (Barrett et al. 1991, Keane et al. 1994). Areas of
ponderosa pine and mixed-conifer forest comprise a rel-
atively small proportion of CCE (about 15%; Rollins
2009) and were historically maintained by low- and
mixed-severity fire regimes (Arno et al. 2000). Most of
the study area (>60%), however, is composed of sub-
alpine forest types and characterized by a mixed- to
high-severity fire regime. The fire season runs from mid-
July through September (USDA Forest Service 2016b).
Nearly 351,000 ha burned from 1972 to 2015.

SBW (Selway-Bitterroot Wilderness).—The SBW
(5,471 km2) is located in western Montana and north-
central Idaho. Elevations range from 531 m to over
3,000 m. Subalpine forest types comprise a large portion
of the study area (50%), followed by Douglas fir and
mixed conifer forests (~30%; Rollins 2009). The fire sea-
son runs from late-June through mid-September (Brown
et al. 1994). The fire regime is categorized as mixed:
lower-severity surface fires are common in the lower ele-
vations and patchy, stand replacing fires become more
common as elevation increases, although during extre-
mely dry years, stand-replacing fires can occur through-
out the study area (Brown et al. 1994). About
287,000 ha of SBW burned from 1972 to 2015.

FCW (Frank Church–River of No Return Wilderness).—
The FCW (9,777 km2) is located in central Idaho. Eleva-
tions range from 600 to 3,136 m and topographic fea-
tures include river breaks, deep canyons, mountains, and
glaciated basins (USDA Forest Service 2003). The fire

FIG. 2. Fire history (fires ≥20 ha) of each study area. WBNP, Wood Buffalo National Park; CCE, Crown of the Continent
Ecosystem; SBW, Selway-Bitterroot Wilderness; FCW, Frank Church–River of No Return Wilderness; GAL, Gila and Aldo Leo-
pold Wilderness.
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season runs from early-July to mid-September (USDA
Forest Service 2016b). Vegetation is dominated by
mixed-conifer (~40%) and subalpine forest types (~30%)
(Rollins 2009). FCW has a mainly mixed-severity fire
regime where low-elevation, open ponderosa pine forests
typically experience frequent, low-intensity fires, and,
generally, fire frequency decreases and severity increases
with increasing elevation, moisture, and tree density
(Crane and Fischer 1986). From 1972 to 2015, about
885,000 ha burned in FCW.

GAL (Gila and Aldo Leopold Wilderness).—The GAL
(3,087 km2) incorporates the Gila and Aldo Leopold
Wilderness Areas in western New Mexico, USA. Eleva-
tions range from 1,462 to 3,314 m and the topography is
diverse, composed of mountains, broad valleys, steep
canyons, and extensive mesas. Vegetation in GAL is
composed largely of ponderosa pine forest (about 30%),
juniper–pinyon pine woodland (40%), and mixed-conifer
forest types (20%; Rollins 2009). The fire season runs
early May through mid-July (USDA Forest Service
2016b), although fires are less likely after mid-June due
to rains associated with monsoonal storms from the
Gulf of Mexico (Rollins et al. 2002). Fires in GAL often
burn as low-severity surface fires, but fire severity tends
to increase with elevation (Swetnam and Dieterich 1985)
and varies with aspect, incident radiation, and topo-
graphic position (Holden et al. 2009). About 380,000 ha
burned from 1972 to 2015.

Fire data

Our analysis approach involved a comparison of the
observed fire history to a randomly generated fire history
and therefore required two geospatial fire history data
sets (i.e., observed and random) for each study area.
Observed fire history atlases for each study area span
1972–2015 and depict all fires ≥20 ha (Fig. 2). Fire his-
tory data sets covering 1972–2012 for the U.S. study areas
were obtained from Parks et al. (2015). These fire atlases
were updated through 2015 with fire perimeters obtained
from the Monitoring Trends in Burn Severity project
(Eidenshink et al. 2007) and the Geospatial Multi-
Agency Coordination Group (data available online).5,6

However, because these data sources generally do not
map smaller fires (those <~400 ha), we identified and
mapped smaller fires that occurred from 2013 to 2015
using Landsat imagery following the methods described
in Parks et al. (2015). The observed fire atlas for WBNP
was obtained from the Canadian National Fire Database
(2017). Fires that occurred prior to ~1995 in WBNP may
be mapped less accurately and likely overestimate area
burned to some degree since they were not delineated
with satellite imagery as they were in the U.S. study areas.
However, given the sheer size of fires and annual area

burned in WBNP, this artifact likely has a negligible influ-
ence on our results. The polygon-based fire history data
for WBNP were converted to raster data sets (30-m reso-
lution) for each year in which a fire occurred.
The purpose of the randomly generated fire atlas was

to serve as a neutral expectation with which to compare
observed fire intervals. Within each study area and for
each year 1972–2015, we randomly assigned “burned”
pixels in the same proportion as the actual observed area
burned in each year (Appendix S1), thus preserving the
overall temporal pattern of burning for each study area.
To preserve the spatial aspects of the observed fire his-
tory patterns, we also ensured that the probability that
any given pixel was randomly assigned as burned was
proportional to the number of observed times burned
during the study period (1972–2015); pixels that burned
multiple times have more random fires compared to pix-
els that burned only once over the study period (Fig. 2).
Preserving these aspects of the observed data in the ran-
dom fire atlas allowed us to statistically assess the depar-
ture of the observed fire intervals from those of a neutral
expectation and evaluate how these departures vary
according to spatial and temporal climatic variation.
This approach also ensured that we did not randomly
assign pixels as burned in regions that may have (1) bio-
climatic or fuel conditions that inhibit fire occurrence
(e.g., alpine environments) or (2) burned prior to 1972
(the first year in our fire history atlases) and may be
influencing fire activity during our study period.

Statistical analysis

Survival analysis is a statistical approach used in many
fields for analyzing “time-to-event” data. In the biomedi-
cal context, the event of interest is often the death of a
patient, and can be used to quantify, for example, how
long cancer patients survive on a drug treatment com-
pared to a placebo (cf. Fizazi et al. 2012). Survival anal-
ysis is becoming an increasingly important tool for
analyzing fire-interval data (e.g., Moritz 2003, Cyr et al.
2007, Senici et al. 2010, Parks et al. 2016) and we apply
this approach here to evaluate wildland fire’s self-limit-
ing capacity. In the lexicon of survival analysis, the event
of interest is a fire and the elapsed time between succes-
sive fires (i.e., the fire interval) is used to generate our
models. Survival analysis can account for censored data
(Klein and Moeschberger 2005), meaning some data are
incomplete because the true interval between fires is
unknown. This would be the case, for example, for a
pixel that burned only once during the study period
(1972–2015) in 2005. This observation is censored
because, although the pixel was fire free for at least
33 yr (2005 minus 1972), we cannot know the true fire-
free interval. We also assume that the pixel will experi-
ence another fire at some time after our study period
ends (in 2015), but we cannot know when (this record is
also censored). For each pixel that experienced a fire, we
recorded the elapsed time (number of years) between the

5 http://www.mtbs.gov/
6 http://www.geomac.gov/
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fire and the previous fire. Observations are censored in
cases where there is no record of a previous or subse-
quent fire (Moritz et al. 2009). The identical approach
was used on the random fire data sets. This resulted in
fire interval data (i.e., time-to-event) for both the
observed record and the control (i.e., random fire data
sets) for each study area.
We used the hazard ratio to quantify the strength and

longevity of wildland fire’s self-limiting effect. In the
context of our study, the hazard ratio is the ratio
between the hazard rate of the observed and random
data sets and should be interpreted as the probability
that a fire will occur in a previously burned area com-
pared to that expected by chance. A hazard ratio <1 indi-
cates that fire is less likely to occur in a previously
burned area compared to that expected by chance. To
compute the hazard ratio, we used Cox proportional
hazard modelling (Cox 1992) with the survival package
(Therneau 2015) within the R statistical environment (R
Core Team 2016). However, an assumption of propor-
tional hazards regression is that the hazard ratio is con-
stant over time (Spruance et al. 2004). This is not a
realistic assumption, as several studies have shown that
strength of the self-limiting effect is strong in the first
few years after fire but weakens as time since fire
increases (Collins et al. 2009, Bradstock et al. 2010,
Holsinger et al. 2016, Parks et al. 2016). To counter the
proportional hazards assumption, we used the timeSplit-
ter() function in the Greg package (Gordon and Seifert
2016) and, with guidance from the associated vignette,
we created time-dependent model coefficients (vignette
available online).7 Consequently, we used the Cox pro-
portional hazard model to plot the hazard ratio as a
function of time since fire.
To explore how the self-limiting effect varies along a

spatial climatic gradient, we added the climatic moisture
deficit (CMD; Fig. 1) as an independent variable to the
Cox proportional hazard models (Eqs. 1 and 2). CMD is
a simplification of the multi-decadal climatic water deficit
(Stephenson 1990), which is a measure of the difference
between reference evaporation and evapotranspiration.
As a robust metric describing the aridity gradient, CMD
and similar metrics are strongly correlated with fire
regime characteristics (e.g., Littell and Gwozdz 2011,
Parks et al. 2014b, Kane et al. 2015b). Gridded CMD
(1-km resolution) was obtained from AdaptWest (Wang
et al. 2016) and represents a 30-yr average over the 1981–
2010 time period (data available online).8 CMD was
extracted for all observed and random fire samples. For
each study area, we built two models describing the haz-
ard ratio (HR); one model assumes proportional hazard
(Eq. 1) and the other recognizes that the HR changes as
time since fire increases (Eq. 2). The simplified form of
the models are as follows:

HR � CMD (1)

HR � CMDþ FIþ CMD� FI (2)

(Eq. 1 assumes proportional hazard and Eq. 2 includes
time-varying coefficients) where CMD is the climatic
moisture deficit, FI is the fire interval, and CMD 9 FI is
an interaction term.
To explore how the self-limiting effect varies according

to temporal climatic variation, we incorporated the Pal-
mer Drought Severity Index (PDSI) into the models. We
used the PDSI from the month with the average highest
fire activity (June in WBNP and GAL, August in CCE,
SBW, and FCW). Gridded monthly PDSI values (4-km
resolution) for the U.S. study areas were obtained from
PRISM (Daly et al. 2002); for WBNP, gridded June
PDSI (2.5° resolution) was obtained from Dai et al.
(2004). For WBNP, PDSI was available only until 2014,
so fire data for 2015 are not included in the PDSI analysis
for WBNP. Gridded PDSI values were averaged within
each study area to obtain a single value for each year.
PDSI values were thus assigned to each record in which
an observed or random pixel burned. However, we do not
know the PDSI for samples that were censored at the end
of our fire record (i.e., those samples that burned prior to
2015 but will reburn at some point after 2015 [but 2014 in
WBNP]). For these samples, we assigned a PDSI value
randomly drawn from the observed fire record. Again, we
built two models for each study area, one assuming
proportional hazards (Eq. 3) and the other using time-
Splitter() to ensure that time since fire and PDSI were
time-dependent variables (Eq. 4); The simplified form of
the models are as follows:

HR � PDSI (3)

HR � PDSIþ FIþ PDSI� FI (4)

(Eq. 3 assumes proportional hazard and Eq. 4 includes
time-varying coefficients) where PDSI is the Palmer
Drought Severity Index, FI is the fire interval, and PDSI
9 FI is an interaction term.
Due to the potential for strong spatial autocorrelation

in fire data (Kane et al. 2015a, Holsinger et al. 2016),
we conducted all statistical procedures 100 times using
100 data subsets. Each subset was randomly selected
from both the observed and random fire data sets at a
sampling rate of 0.1%. This sampling rate was intended
to reduce the effect of spatial autocorrelation and was
chosen based the range of the semivariograms generated
with gridded (30-m resolution) fire data described in
Parks et al. (2014a). All of the results and figures pre-
sented in this paper depict the 50th percentile values of
the 100 models. Confidence intervals (90th percentile)
were also generated from the predicted response of the
100 models. We evaluated statistical significance using
the mean P value of the 100 models for the independent
variable in Eqs. 1 and 3 and the interaction term in

7 https://cran.r-project.org/web/packages/Greg/vignettes/time
Splitter.html

8 https://adaptwest.databasin.org/
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Eqs. 2 and 4. Specifically, we scaled (i.e., multiplied) the
mean P value by two as described by Vovk (2012).

RESULTS

Wildland fire substantially reduces the probability of
burning in all five study areas (Fig. 3; see Appendix S2
for CIs; P ≤ 0.001 in all study areas). The strength of
this effect is strongest immediately after fire and decays

as time since fire increases. The self-limiting longevity
(i.e., the length of time that the hazard ratio remains <1)
varies among study areas: 33 yr in WBNP and CCE,
23 yr in SBW, 28 yr in FCW, and 15 yr in GAL (Fig. 3;
Appendix S2). To emphasize stronger self-limiting
effects, we also calculated the length of time the hazard
ratio remains <0.5, which is the number of years in
which there is a reduction of at least 50% in the probabil-
ity of burning compared to what’s expected by chance.
These stronger self-limiting effects persist for 20 yr in
WBNP, 21 yr in CCE, 13 yr in SBW, 14 yr in FCW, and
7 yr in GAL.
Spatial variation in CMD influences the strength of

wildland fire’s self-limiting effect (Fig. 4; P ≤ 0.05 in all
study areas). This relationship is positive, with the haz-
ard ratio increasing with CMD, indicating a weakening
of the self-limiting effect as CMD increases. When incor-
porated into models using time-varying coefficients, the
interaction between CMD and the fire interval is also
statistically significant in all study areas (P ≤ 0.05;
Fig. 5). At higher CMD values, the strength and longev-
ity of the self-limiting effect is reduced compared to
lower CMD values. This highlights that there is substan-
tial spatial variation within each study area in terms of
wildland fire’s self-limiting capacity. In SBW, for exam-
ple, the fire’s self-limiting longevity is 28 yr at 10th per-
centile CMD values but only 15 yr at 90th percentile
CMD values (Fig. 5).
PDSI, which varies annually, also influences the

strength of wildland fire’s self-limiting effect (Fig. 4;
P ≤ 0.05 in all study areas). This relationship is negative;
as PDSI increases (indicating increasingly wetter years),
the hazard ratio decreases, indicating that the self-limiting
effect strengthens. When PDSI is incorporated into the
models using time-varying coefficients, it is apparent that

FIG. 3. Hazard ratio as a function of time since fire for the
five study areas. Values represent the relative probability (com-
pared to the null model) that fire will burn within the perimeter
of a previous fire. Values <1 indicate that fire is less likely to
burn within the footprint of a previous fire compared to that
expected by chance. Confidence intervals (90%) shown in App-
endix S2.

FIG. 4. Hazard ratio as a function of (a) the Climatic Moisture Deficit (CMD; evaluates spatial climatic variation; Eq. 1) and
(b) the Palmer Drought Severity Index (PDSI; temporal climatic variation; Eq. 3). Because these relationships assume proportional
hazards (i.e., the hazard ratio does not change as time since fire increases), we built additional models incorporating time varying
coefficients for time since fire and CMD (Fig. 5) and time since fire and PDSI (Fig. 6).
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temporal climatic variation substantially influences the
strength and longevity of wildland fire’s self-limiting
effect (P ≤ 0.05 in all study areas; Fig. 6). The strength
and longevity of the self-limiting effect is weaker in drier
years (lower PDSI) compared to wetter years (higher
PDSI). For example, in SBW, the self-limiting longevity
lasts 27 yr under average moisture conditions (PDSI = 0)
but only 18 yr under drought conditions (PDSI = �4).

DISCUSSION

Our study clearly shows that wildland fire reduces the
probability of subsequent fire, thereby reinforcing that
the “ecological memory” of fire has a substantial influ-
ence on subsequent fire–vegetation dynamics across
landscapes in western North America (Turner 1989,
Peterson 2002). Indeed, fire itself is often cited as a key
factor in restoring resilience to future fire (McKenzie
et al. 2011, Schoennagel et al. 2017) and, in light of this,
land managers should explicitly acknowledge fire as an
important factor contributing to fire-free intervals.
Whereas this fire–fuels feedback is increasingly
recognized, our results reveal important subtleties: the

strength and longevity of wildland fire’s self-limiting
capacity varies substantially across fairly fine-scale envi-
ronmental gradients, likely corresponding to different
vegetation types, and as a result of inter-annual climatic
variation (i.e., drought).
Wildland fire consumes fuel, and therefore, subsequent

fire is unlikely within burned areas until sufficient fuels
reaccumulate. This self-limiting feedback is considered a
fundamental ecosystem process and is critical in creating
mosaics of fuel ages across landscapes that in turn result
in heterogeneity in fire behavior and effects (Agee 1993,
McKenzie et al. 2011). Our finding that wildland fire lim-
its subsequent fire activity is in strong agreement with
several previous evaluations of related phenomena
(Collins et al. 2009, Fernandes et al. 2012, H�eon et al.
2014, Holsinger et al. 2016, Parks et al. 2016, Erni et al.
2017). However, our results contrast with some studies
that concluded burned areas have little-to-no influence on
subsequent fire activity (Johnson et al. 2001, Moritz
2003, Price et al. 2015). One reason for this discrepancy
is likely due to differences in the dominant vegetation
type (thus in fire behavior) or fire environment. For exam-
ple, a lack of fuel age dependence in shrubland

FIG. 5. Hazard ratio with confidence intervals (90th percentile) as it varies by time since fire and climatic moisture deficit
(CMD) (Eq. 2). CMD percentiles are based on burned areas only and not the study area as a whole.
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ecosystems has been documented in California, USA and
South Africa (e.g., Moritz et al. 2004, Van Wilgen et al.
2010, Price et al. 2012); we did not evaluate such ecosys-
tems. Another potential reason for these contrasting
results is that fires only burn under extreme fire-weather
conditions in some regions due to effective fire suppres-
sion, in that fires are more likely to be extinguished under
moderate compared to extreme weather conditions (Ari-
enti et al. 2006, Thompson et al. 2016). In contrast, fire
suppression is discouraged in our study areas and, conse-
quently, the fires we studied may have burned under a
wider range of fire weather. Nevertheless, because our
analysis used consistent methodology across numerous
fire-prone study areas, our results are robust, compelling,
and likely applicable to other forested fire-prone regions.
Variation in terms of the strength and longevity of the

wildland fire’s self-limiting effect is evident among the
various ecological settings represented by our study
areas: in the coldest and most northern study areas
(CCE and WBNP), the self-limiting longevity is over
twice that of the warmest, most southern study area

(GAL). These regional discrepancies are a result of an
ecological setting defined by top-down controls on pro-
ductivity (i.e., climate), hence post-fire fuel accumulation
rates, and bottom-up constraints on fire ignition and
spread (Meyn et al. 2007, Krawchuk and Moritz 2011,
Parks et al. 2012). For example, fire in the most south-
ern study area (GAL) is largely characterized as a sur-
face fire regime and is primarily carried by fine fuels
(i.e., grass and pine litter) that recover quickly after fire
(Swetnam and Baisan 1996), whereas fires in the north-
ern study areas are increasingly stand-replacing and car-
ried by ladder and canopy fuels that develop over longer
periods (Schimmel and Granstr€om 1997, Schoennagel
et al. 2004). Hence, top-down and bottom-up controls
on fire, fuels, and their interactions (Bond et al. 2005,
Keane et al. 2015) are responsible for the general pattern
we observed: the self-limiting effect is overall stronger
and has greater longevity in the north compared to the
south in the forested study areas we evaluated, which
contrasts with the results of Price et al. (2015), who
found no discernable trend. It is worth noting, however,

FIG. 6. Hazard ratio as a function of time since fire and PDSI (Eq. 4); decreasing PDSI values represent increasing drought
conditions. Note that the displayed PDSI values may differ among study areas because fires did not generally occur under certain
PDSI conditions over the course of our study. Confidence intervals (90th percentile) are not shown for CCE because of the large
degree of overlap among them.
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that Price et al. (2015) examined wildfires across extre-
mely large areas, portions of which are subjected to
effective fire suppression or otherwise do not exhibit
high fire activity. This is an important consideration
because the occurrence of fire interactions are partly a
function of the overall fire activity (i.e., greater activity
translates to a highly probability of interaction; H�eon
et al. 2014).
In addition to the observed variation among study

areas, our findings clearly show that, within a study
area, fine-scale spatial climatic variation influences wild-
land fire’s self-limiting effect. The climatic moisture
deficit (CMD) concurrently incorporates moisture avail-
ability (i.e., precipitation) and moisture demand (i.e.,
temperature), and consequently, lower CMD sites gener-
ally correspond to wetter and cooler areas, whereas
higher CMD sites to drier and warmer areas (Stephen-
son 1998). In all study areas, wildland fire’s self- limiting
capacity is stronger and lasts longer in wet and cool set-
tings vs. dry and warm settings, providing evidence that
some forest types generally exert a stronger negative
feedback on wildland fire than others. Our results are
thus consistent with studies who concluded that spatial
climate variation is a strong control on fire frequency
(McKenzie et al. 2000, Guyette et al. 2012). More
importantly, however, fine-scale variation in fuel accu-
mulation rates corresponding to spatial climatic varia-
tion (Cleveland et al. 1999, Anderson et al. 2006) clearly
influences the strength and longevity of wildland fire’s
self-limiting capacity.
Our results show that the self-limiting effect is weaker

and has reduced longevity when fires burn under drought
conditions, although antecedent conditions (both drought
and above-average precipitation) are known to influence
both productivity and fire activity in some ecosystems
(Swetnam and Baisan 1996, McKenzie and Littell 2017).
Our findings are therefore consistent with previous
investigations that concluded that previous fires were less
likely to act as a barrier to subsequent fire spread under
extreme fire weather (Collins et al. 2009, Parks et al.
2015, Erni et al. 2017) and with various other studies
highlighting the importance of weather in influencing fire
activity (Abatzoglou and Kolden 2013, Wang et al. 2014,
Lydersen et al. 2017).
Our findings shed some light on the debate as to

whether or not previously burned areas limit subsequent
fire activity even under extreme weather conditions. In
agreement with Collins et al. (2009) and Parks et al.
(2015), our results show that extreme fire weather weak-
ens but does not completely override the self-limiting
effect of fire. However, our results contrast with studies
that found that extreme fire weather has either no effect
(Price et al. 2014, Storey et al. 2016) or completely over-
rides the self-limiting effect of fire (e.g., Johnson et al.
2001, Price et al. 2012). As previously discussed, we
suggest these discrepancies are due to differences in
methods, ecosystems evaluated, and fire regime. Never-
theless, in the context of a warming climate, our results

suggest that recently burned areas will still limit subse-
quent fire activity, but the strength and longevity of the
effect may be reduced if the frequency of fire-conducive
conditions increases as anticipated (Stocks et al. 1998,
Wang et al. 2017).
Because many fire-prone forested landscapes of west-

ern North America have been transformed by a century
of fire exclusion and management activities (e.g., log-
ging; Heyerdahl et al. 2001, Keane et al. 2002), they are
often thought to be susceptible to uncharacteristically
large and severe wildland fire that may lead to ecological
degradation (Mallek et al. 2013, Harris and Taylor
2015, Coop et al. 2016). Consequently, there is mount-
ing interest in restoring landscapes that are resilient to
wildland fire (Hessburg et al. 2015, Stephens et al.
2016). Given that many regions in western North Amer-
ica have experienced a 2- to 10-fold increase in fire activ-
ity in recent decades (i.e., since the 1970s; Westerling
2016) despite aggressive fire-suppression policies (Calkin
et al. 2014), there is a strong need for detailed informa-
tion pertaining to wildland fire’s ability to limit future
fire activity. As such, our results suggest that this recent
fire activity might be used as an opportunity to restore
fire as a fundamental ecosystem process (McKenzie
et al. 2011). Policies of continued aggressive fire suppres-
sion could forego such opportunities and will likely
return landscapes to a state that is not resilient to fire
(Calkin et al. 2015, North et al. 2015). Simply put, con-
temporary landscape patterns and fuel loads in regions
that have experienced recent fire may provide a respite
from uncharacteristically large fires in future years
(Turner 1989). Bypassing these opportunities may not
be prudent for the long term sustainability and health of
forested ecosystems in western North America (Moritz
et al. 2014).
By design, our study was focused on the likelihood of

subsequent burning and did not account for variation in
fire severity. However, fire severity is known to influence
post-fire successional trajectories, other ecosystem func-
tions, and the severity of subsequent fires (Collins et al.
2009, Miller et al. 2012, Chambers et al. 2016, Kemp
et al. 2016, Stevens-Rumann et al. 2016, Morgan et al.
2017). We might therefore expect severity of previous fire
to also influence subsequent fire likelihood. Incorporat-
ing fire severity would have certainly painted a more
complete picture of the self-limiting effect of wildfires,
but adding this component was not only beyond the
scope of this study, but was not possible given our statis-
tical approach since we have no information on the
severity of censored observations. Nevertheless, this
knowledge gap should be addressed in future research
efforts.
Several factors should be considered when interpret-

ing our findings. For example, fires that occurred prior
to 1935 have been shown to limit fire activity in the late-
20th and early 21st century despite the passing of several
decades in at least one of our study areas (SBW; Morgan
et al. 2017). As such, our sampling approach and
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statistical design that included only those areas that
burned during the 1972–2015 time period may actually
underestimate the self-limiting longevity. In other words,
our observed fire intervals (censored and uncensored)
can never exceed 43 yr due to our fire record (spanning
1972–2015), but fire intervals could be longer were we to
have data spanning a longer time period. Also, we may
have underestimated the influence of temporal climatic
variation because the PDSI data we used were resolved
monthly and fire spread is known to respond to sub-
daily to daily variation in weather (e.g., Wang et al.
2014, Holsinger et al. 2016). Although this was likely a
reasonable approach given the timeframe of our study
(1972–2015), it is possible to estimate the exact dates at
which fires burned for recent fires (2002–present) by
interpolating satellite fire detection data, thereby
enabling the analysis of daily weather (cf. Parks 2014,
Veraverbeke et al. 2014). Furthermore, although the
probability of burning (i.e., the hazard ratio) increases
beyond the value of one at the self-limiting longevity
threshold (e.g., Fig. 3), this should not be interpreted as
a higher probability of burning compared to areas with
extended fire-free intervals. The Cox proportional mod-
els used log-linear terms and, as a result, the probability
of burning by necessity increases above one. Future
investigations using similar methods could explore non-
linear or asymptotic responses. In particular, non-linear
response terms may be important in study regions that
include extremely hot and dry bioclimatic settings where
fuel accumulation rates are low and the self-limiting
effect may be quite strong; in such cases, we might
expect the hazard ratio to exhibit a unimodal response
along a spatial climatic gradient (cf. Krawchuk and
Moritz 2011, Pausas and Ribeiro 2013).

CONCLUSIONS

Our study provides three important insights concern-
ing the influence of burned areas on the probability of
subsequent fire in forested landscapes of western North
America. First, wildland fire clearly exhibits self-limiting
characteristics, in that burned areas show a reduced
probability of burning; the strength of this effect decays
over time and lasts 15–33 yr, generally increasing from
south to north. Second, fine-scale spatial climatic varia-
tion has a strong influence; within each study area, the
self-limiting effect is stronger and lasts longer in wetter
and cooler sites compared to drier and warmer sites.
Third, temporal climatic variation influences wildland
fire’s self-limiting capacity; the strength and longevity of
the self-limiting effect were reduced during years of
drought. Our study areas are protected lands with little
to no anthropogenic infrastructure (e.g., roads) and have
policies that de-emphasize fire suppression and encour-
age the role of wildland fire as a natural process. As
such, these study areas are somewhat atypical. Neverthe-
less, our findings are highly relevant to other fire-prone
forested regions in North America and elsewhere where

the human imprint on the fire regime is stronger (Pari-
sien et al. 2016, Camp and Krawchuk 2017).
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